
Performance Variability of Highly Parallel
Architectures

William T.C. Kramer1 and Clint Ryan2

1 Department of Computing Sciences, University of California at Berkeley and the
National Energy Research Scientific Computing Center, Lawrence Berkeley National

Laboratory
2 Department of Computing Sciences, University of California at Berkeley

Abstract. The design and evaluation of high performance computers
has concentrated on increasing computational speed for applications.
This performance is often measured on a well configured dedicated sys-
tem to show the best case. In the real environment, resources are not
always dedicated to a single task, and systems run tasks that may influ-
ence each other, so run times vary, sometimes to an unreasonably large
extent. This paper explores the amount of variation seen across four large
distributed memory systems in a systematic manner. It then analyzes the
causes for the variations seen and discusses what can be done to decrease
the variation without impacting performance.

1 Motivation

Application performance for computer systems, including parallel system hard-
ware and architectures, is well studied. Many architectural features are assessed
with application benchmarks — be it on real or simulated systems — so the
impact of the functions can be evaluated. To a lesser degree, system software is
evaluated for performance of both the code itself and the applications that use
it.

Despite the studies there is a crucial area of performance that has not re-
ceived enough attention—specifically how much variation in performance exists
in systems and what contributes to that variation, particularly when software
and hardware are viewed as a single system. The variability of performance is
a reliability issue as importance as availability and mean time between failures.
The user’s productivity is impacted at least as much when performance varies
by 100% as when system availability is only 50%.

Large scale applications run on multiple CPUs. Many of the most challeng-
ing applications, including climate, combustion, material science and life science
applications need hundreds to thousands of processors for the most demand-
ing problems. Currently, the only technology that can address these large-scale
problems is distributed memory systems consisting of clusters of Shared Memory
Processing (SMP) nodes, connected with dedicated interconnect networks. The
components of the system that can be adjusted for the application workload,
typically fall into three major categories.



• Intensive computation with large memory and fast communication
• Intensive computation with limited memory and less communication
• Intensive computing with large data storage

Architectural features contribute to the performance and variation differently
within these broad categories.

2 Variation Exists in Application Performance

Performance variation is caused by many factors. On multi-user systems with
multiple jobs running within a shared memory processor, frequent causes are
memory contention, overloading the system with work, and priorities of other
users.

Fig. 1. The variation in performance of six full applications that were part of the
NERSC IBM running with 256-way concurrency SP benchmark suite used for system
acceptance. The codes were run over a three day period with very little else on the sys-
tem. The run time variation shows that large-scale parallel systems exhibit significant
variation unless carefully designed and configured.

However, on large-scale distributed memory systems, it is rare the compute-
intensive parallel applications share SMP nodes. The NERSC IBM SP system,
“Seaborg,” is a 3,328-processor system with Power 3+ CPUs. It uses an IBM
“Colony” switch to connect the SMP nodes. The most efficient manner for appli-
cations to use this type of systems is to have nodes dedicated to a single parallel
application that uses communication libraries such as MPI to communicate be-
tween tasks running in parallel. Thus, many factors normally contributing to



variation are not present on these systems, yet, as shown below, application run
times can still vary widely.

Figure 1 shows the variation present on the NERSC IBM SP system when
it was first installed. Previous experience had shown that a number of software
factors could cause variation, including slightly different system software instal-
lation on the nodes, system management event timing (daemons running at par-
ticular times) and application performance tuning. A typical code shows modest
improvements in performance but high variability with a more aggressive setting.
The goal is to recalibrate the timing interval to give the best performance with
the least variation. Despite the challenges, some of which are outlined above,
it is possible to make such a large system as the NERSC IBM-SP operate in
a reliable manner. On a heavily used (85–95% utilization) system running the
general scientific workload, the NPB benchmarks have consistently low perfor-
mance variation over multiple runs averaging a CoV of 1.3%, with the maximum
variation shown by the CG benchmark as 3.25%.

3 Hypothesis

As noted above, many things can be done to minimize performance variation, in-
cluding strict system administration and management, nodes dedicated to single
application, eliminating bugs, adding more resources and configuration tuning.
Nonetheless, fundamental questions remain about how much variation is accept-
able, how low variation can be on specific systems, and what most influences
variation. This study is the initial attempt to explore the question Do paral-
lel system architectures/designs influence performance variation in addition to
performance itself? We believe they do.

The approach of this study is to define experiments to understand factors
that determine the relevant key features that influence variability of results. We
assembled a set of portable codes that are representative of highly parallel appli-
cations and can be used to assess the variability of different system architectures.
The codes were run on different architectures and the results were analyzed.

4 The Basic Tests

A number of codes were considered for testing architectures, including SPLASH[1]
and Spec[2] benchmarks. Of the benchmark suites available the most effective
for this purpose are the NAS Parallel Benchmarks[3] (NPBs), created at NASA
Ames Research Center. The benchmarks have been heavily used on a wide range
of architectures. They are portable and are known to give comparable results
across systems. Since NPBs have been in use for over 10 years (evolving from
Version 1 to Version 2), they are well understood. The codes were sensitive to
other activities running on the systems. Finally the benchmarks have been cor-
related to real scientific workloads at a number of sites.



The NPB benchmarks are implemented primarily in FORTRAN, with some
C. They use MPI as the message passing interface. The suite has different prob-
lem set sizes, three for parallel code and one for serial execution.

For the sake of simplicity, three NPB benchmarks were chosen for use.
• LU—The LU benchmark solves a finite difference discretization of the 3-D
compressible Navier-Stokes equations through a block-lower-triangular block-
upper- triangular approximate factorization of the original difference scheme.
The Computation to Communication ratio is high so the code scales well. LU
uses many small messages.
• FT—A 3-D FFT PDE with a 3-D array of data is distributed according to z-
planes of the array. One or more planes are stored in each processor. The forward
3-D FFT is then performed as multiple 1-D FFTs in each dimension. An array
transposition is performed, which amounts to an all-to-all exchange. Thus FT
shows big, busty communication patterns amongst all nodes in between periods
where all nodes are computing on their own data.
• EP—(Embarrassingly Parallel). Each processor independently generates pseu-
dorandom numbers in batches and uses these to compute and tally pairs of nor-
mally distributed numbers. No communication is needed until the very end. This
test was included to give a baseline for CPU performance.

5 Architectures Evaluated

Four systems with different architectural features were used in the evaluation.
The complete features are listed in the at http://www.nersc.gov/∼kramer/
variation-systems.pdf, but a brief summary if provided here.
• Cray T3E—The oldest system is the Cray T3E at the NERSC, placed into
service in 1997. The “mcurie” system consists of 696 CPUs, each with 256 MB
of local memory. Together with interconnect hardware, the processor and local
memory form a Processing Element (PE) or node. The PEs are connected by a
network arranged in a 3-dimensional Torus with low latency and relatively high
bandwidth. The processors are T3E Alpha EV-57 running at 450 MHz, capable
of two floating point operations per cycle. The system uses a UNIX like operating
system that has a Chorus derived microkernel on the 644 compute nodes and
UNICOS/mk on the OS and command nodes. The T3E is the only system with
static routing.
• IBM SP—The next system is a 3,328 processor IBM-RS/6000-SP at NERSC
called “Seaborg.” It is composed of a 184 compute nodes containing 16 Power 3+
processors connected to each other with a high bandwidth, switching network
known as the “Colony” switch in a Omega topology. A full instance of AIX runs
on every node. Each node has two switch adapters. Four nodes have 64 GB, 64
nodes have 32 GB and the rest have 16 GB.
• Compaq SC—The Lemieux Compaq SC system at the Pittsburgh Super-
computer Center (PSC) is composed of 750 Compaq Alphaserver ES45 nodes
and a separate front end node. Each computational node contains four 1-GHz
processors capable of two Flop/s per cycle and runs a full incidence of the Tru64



Unix operating system. A Quadrics Elan3 interconnection network connects the
nodes in a Fat Tree topology. Each node is a four-processor SMP, with 4 GB of
memory and two switch adapters.
• Intel—The final system is LBNL’s “Alvarez” commodity cluster of 85 two-way
SMP Pentium III nodes connected with Myrinet 2000, another Fat Tree. The
CPUs are xSeries 330, running at 866 Mhz with 1 GB SDRAM each. Each node
runs Linux RedHat distribution.

Thus, the systems studied show three types of network topology, four oper-
ating systems, and four types of processors.

6 Test Results

On each system, a number of runs were executed for each of the three NPB
codes. All codes were run using the largest (Class C) problem sets with a 128-
way concurrency using 128 MPI tasks. This was chosen because it used at least
eight nodes and ran long enough to minimize the effects of start up events. The
jobs were run in sets ranging from 10 to 30 runs of each code. Each system
allocated dedicated nodes to the tasks. All runs used a one-to-one mapping of
CPUs to tasks, which meant that the nodes were fully packed and all CPUs were
used. Table 1 summarizes the results for the primary test runs.

Table 1. The basic statistics for the test runs. Including some of the special tests
discussed below, over 2,500 test runs were made.

System EP LU FT

Cray T3E Number of Runs 70 119 118
Mean Run Time (sec) 35.5 305.2 106.5
Standard Dev (sec) 2.2 47.8 12.1
Coefficient of Variance 6.11% 15.58% 11.33%

IBM SP Number of Runs 424 165 210
Mean Run Time (sec) 17.4 74.6 41.5
Standard Dev (sec) 0.09 3.4 2.4
Coefficient of Variance 0.52% 4.58% 5.70%

Compaq SC Number of Runs 336 359 371
Mean Run Time (sec) 5.03 42.8 30.6
Standard Dev (sec) 0.35 1.9 1.0
Coefficient of Variance 6.91% 4.53% 3.18%

Intel Cluster Number of Runs 112 71 119
Mean Run Time (sec) 17.6 408.7 90.7
Standard Dev (sec) 0.03 10.7 1.0
Coefficient of Variance 0.17% 2.62% 1.07%

There was no significant variability due to time of day or which nodes were used
by the scheduler to to run the jobs.



7 EP Variation

Two machines, the T3E and PSC Compaq, showed an unexpectedly high vari-
ation for EP runs. As its name suggests, EP does very little communication.
However, because it has such a short run time, it is possible that individual
cases of network congestion caused this variation. If a version of EP that does
not use the network still shows significant variation, the individual node must
be at fault. To test this, we ran the serial version on the T3E and a four-CPU (a
single node) version on the Compaq. The coefficient of variation for the Compaq
dropped to less than 1.6%, indicating that something on the node was causing
variation. Variation dropped to 1.5% on the T3E, but we wished to determine
the effect of migration. We measured only CPU time for the T3E and found less
than 0.5% variation. From this we can conclude that the network and, in the
case of the T3E, the NPB method of timing, were responsible for most of the
variation. Only on the Compaq system do individual nodes contribute to the
variation.

8 Changing the Number of Adapters

Two machines in the study, the IBM SP and the Compaq system, have a variable
number of network ports (adapters) on each node. We expected the use of more
adapters would mean run time and variation for the LU and FT benchmarks, but
not for the EP benchmark. A set of test runs was made of all three benchmarks
using both one and two adapters.

Changing from one to two adapters had a statistically significant effect on
mean run time only for the EP and FT program runs on the SP machine (p
< .01 in both cases). Using an F-test to compare changes in the variation, we
found using two adapters increases variation for the FT benchmark on both
systems (p < .05 in both cases). Variation for the LU benchmark decreased with
two adapters on the Compaq (p < .01) and increased with two on the SP (p
< .01). As expected, changing the adapter had no significant effect on the EP
benchmarks.

These results agree with many, but not all, of our hypotheses. Increasing the
number of adapters did not have much effect on mean run time, probably because
the codes do not send enough data to benefit from an increase in bandwidth. We
cannot explain why EP shows an increase in performance on the SP with two
adapters. In addition, we do not yet know why LU performed more consistently
on the Compaq with two adapters. These results do suggest two things. First,
different factors influence variation; one cannot simply say that changing one
particular aspect of a network will decrease variation for all programs that use
the network. Second, when optimizing a program for a particular system, a
programmer should consider things that do not necessarily increase megaflop
rate or decrease memory usage. Analysis of Variance (ANOVA) suggest that
changing adapters had the following effects on run time: a) no effect on PSC, b)
no effect on SP for the LU code and c) an effect on the SP both the EP and SP
codes.



9 High Variation on the Cray T3E

With the exception of the T3E, all of the machines studied had distributions
such as the one shown in Figure 2(a). In essence, the distributions were tight
bell curves with long right tails. Almost every job experienced some normally
distributed slowdown, while a few suffered significantly more. A typical distribu-
tion for the T3E is shown in Figure 2(b). The majority of jobs experienced only
a very small slowdown, while a significant portion suffered a far larger slowdown
(40% or more in some cases). To test for this, we examined the system logs for
some of the runs and measured only system time. This caused the histograms
to collapse into ones similar to Figure2(c).

Fig. 2. Histograms of (a) LU times from the Compaq SC system. Note Gaussian dis-
tribution with a long fat tail. (b) LU runs from the T3E using the NPB report times.
Note a much tighter distribution. (c) T3E distribution based on accounting data, not
the run time as reported by LU. This eliminates the impact of migration and shows a
much more tightly packed distribution.

We were surprised at the variation indicated for the Cray T3E, which seemed
unusually high, and investigated further. In order to make efficient use of the
network, the T3E assigns logical node numbers to physical PEs at boot time.[4]
Physical node numbers are based on how the node physically connects in the
interconnect network. Logical numbers are assigned deterministically to mini-
mize routing. The switch does direction order routing and special routing, but
adaptive routing was never implemented, so the T3E only routes data through
a predefined path using virtual channels.

Jobs are scheduled on logically contiguous nodes. This means that large con-
tiguous blocks of PEs gradually become fragmented, making it increasingly dif-
ficult to run jobs requiring large numbers of CPUs. The T3E addresses this
problem by periodically scanning all the PEs and identifying ones that have
no work assigned. In a manner similar to memory shuffling, the system “mi-
grates” jobs to pack all the running PEs together. This creates larger sets of
contiguous PEs for new jobs to start. Jobs are assigned to PEs using a number
of parameters, including an alignment measure that indicates how the starting
point and/or ending point of the application aligns to power of two logical PE
node number.[5]



In order to efficiently schedule new jobs, the T3E system software called the
Global Resource Manager (GRM) scans all the nodes to look for opportunities
to migrate. The frequency of scans is site selectable; on the T3E under study
occur at five second intervals.

When jobs are migrated, system accounting is adjusted to compensate for
the time the job is moving and not processing. However, the real time clock con-
tinues, which is what is used to report the NPB run times. System accounting
logs have been correlated with the output of the NPB tests. Comparisons of T3E
coefficients of variance using actual NPB Run Time reports and system account-
ing data are made. The NPB run time reports calculate the “wall clock” time
for the test—and do not adjust for time lost due to migration or checkpoints.
The wall CoV for the wall clock time of EP, LU, and FT were 6.11%, 15.58%,
and 11.33% respectively, while the CPU time not including time spent during
job migration, which most users pay attention to, was much lower at 0.8%, 0.6%,
and 0.93%. When adjusted for time spent migrating, the variation of the T3E
improves considerably. The situation caused by the T3E having to migrate to
maintain a mapping of PEs to the location in the switch fabric has interest-
ing trade offs. Much of the impact of variation discussed earlier is mitigated,
since jobs will not abort due to exceed run times. Yet there are consequences,
such as users waiting longer for results. Not migrating also has consequences,
since certain work will not progress through the system as rapidly and system
productivity will decrease.

10 Detecting and Reacting to Variation

Off-line detection and reaction to variation is possible and is done. Since minimal
variation is not typically designed into architectures, most remediation is via sys-
tem management and software. Making nodes strictly homogenous in hardware
is key—but in differing amount so memory is not an issue unless the application
tries to exploit virtual memory. Making nodes strictly homogeneous with respect
to system software and timing of daemon task runs can have great impact. In-
deed some parallel applications take less time if they do not use all the CPUs in
a node to avoid the intrusive impact of system tasks that run periodically. Thus
a coordinated, system wide timing “heartbeat” to coordinate the execution of
system housekeeping tasks on all nodes may be beneficial.

Architecturally, variation may be impacted most by how the interconnect
functions. Thus a clear evaluation of the likely variability of messages for different
loaded conditions and patterns would seem called for as part of switch design.
The effort to drive variation down to single digits after the fact is large and
complicated.

The work discussed at NERSC required a team of 12 experts working together
for six months, having skills in such areas as switch software and hardware, op-
erating systems, MPI, compilers, mathematical libraries, applications and sys-
tem administration. The improvements also involved major modifications to the
switch micro code, lowest level software drivers and global file systems.



Detecting variation in real time so an application can respond is difficult.
Dynamically detecting and responding in the proper manner is even more dif-
ficult. Some codes, such as the Gordon Bell Prize-winning LSM, are internally
instrumented to report the performance of internal steps—such as reporting the
overall performance or length of time taken for a time step of simulation. From
there, it is feasible to consider monitoring the periods and identifying whether
the past period is within an appropriate range.

Another way to instrument codes is with tools that acquire information from
the hardware. While normally used for debugging and after the fact analysis
of performance, such tools conceivably could be used to assess variation. Past
systems such as the Cray YMP and C-90 could monitor and report hardware
performance with virtually no overhead. In order to assess whether today’s tools
do the same, the benchmarks were built with the IBM performance tools[6],
which monitor and report performance. Seven runs of the three instrumented
benchmarks were made on the IBM SP and compared to the runs made without
the monitoring software. The codes performed up to 250% slower when instru-
mented. Performance variation for the instrumented codes also was dramatically
higher, with increases between 250% and 400%. This is in part because retriev-
ing information counters in network adapters stops all traffic for a period of
time. Unless more efficient methods are developed to decrease the overhead of
performance monitoring, it is unlikely applications will be able to use these tools
directly.

Even when variation is detectable, it is not clear what the proper action
to take would be without a better model of what is going on. For example,
it is unclear whether adding more CPUs to an application improves variation,
because it changes both network traffic patterns and forces the application to
scale more. Likewise, it may be decreasing CPUs would improve the variation
and possibly performance. Several teams using large shared codes specifically
run special tests on target systems to assess performance tradeoffs. However, it
is uncommon for people to also test for tradeoffs in variation. Another concern
is the fact that an application spending time monitoring and deciding what to
do will have a longer run time and possibly a variation in performance.

11 Conclusions

Performance variation does exist on large distributed memory systems and can
have a very significant impact on the useability and effectiveness of the system.
While difficult, it is possible to constrain but not eliminate wide variation with
good system management, tuning and design.

Performance variation still remains a problem and comes from complex trade-
offs of design and implementation. The T3E’s need to migrate jobs in order to
have contiguous nodes assigned to jobs due to switch routing increases variation.
Yet, without migration, system scheduling would be much less efficient. If the
architecture supported adaptive routing this conflict might be mitigated.



Architectural features do influence performance variation. The study of one
or two adaptors shows architectural features impact performance and variation
unexpected ways.

Some of the responsibility to control performance variation belongs in the
domain of system managers. They have to assess how configuration and tuning
changes will impact performance variation as well as absolute performance.

Responsibility for understanding variation also rests with the application
user. The adapter study shows selecting the use of architectural features may
not change performance but may positively or negatively influence the variation
of performance.

Finally, the study of performance variation is important and can have impact
in design of systems and applications. It is worth more resources to continue this
understanding.

12 Acknowledgements

Thanks are given to the Pittsburgh Supercomputer Center and the National En-
ergy Research Scientific Computing Center. In particular, David Skinner, Tina
Butler, Nicholas Cardo, Adrian Wong Thomas Davis and Jonathon Carter con-
tributed ideas to this paper. Special thanks are also owed to Prof John Kubitow-
icz for his suggestions and guidance.

References

1. Woo, Stephan, et al., The SPLASH-2 Programs: Characterization and Methological
Considerations, Proc ISCA, June 1995, Santa Margherita Ligure, Italy, pp 24-36.

2. Henning, John l., SPEC CPU 2000: Measuring CPU performance in the New Mil-
lenium, IEEE Computer, July 2000, pp 28-35.

3. David H. Bailey, et al., The NAS Parallel Benchmarks, Intl. Journal of Supercom-
puter Applications, vol. 5, no. 3 (Fall 1991), pg. 66-73
http://www.nas.nasa.gov/Research/Reports/Techreports/

1996/nas-96-010-abstract.html

4. Cray T3E System Support Skills, Cray Research Technical documentation, Number
R-T3ESSS, Revision R/H, May 1997

5. UNICOS/mk Resource Administration, SG-2602, version 2.0.2
6. IBM Parallel Environment for AIX Dynamic Probe Class Library Programming

Guide, Version 3 Release 1, Document Number SA22-7420-00


